Induced inhibition of ischemic/hypoxic injury by APIP, a novel Apaf-1-interacting protein.

نویسندگان

  • Dong-Hyung Cho
  • Yeon-Mi Hong
  • Ho-June Lee
  • Ha-Na Woo
  • Jong-Ok Pyo
  • Tak W Mak
  • Yong-Keun Jung
چکیده

We describe the isolation and characterization of a new apaf-1-interacting protein (APIP) as a negative regulator of ischemic injury. APIP is highly expressed in skeletal muscle and heart and binds to the CARD of Apaf-1 in competition with caspase-9. Exogenous APIP inhibits cytochrome c-induced activation of caspase-3 and caspase-9, and suppresses cell death triggered by mitochondrial apoptotic stimuli through inhibiting the downstream activity of cytochrome c released from mitochondria. Conversely, reduction of APIP expression potentiates mitochondrial apoptosis. APIP expression is highly induced in mouse muscle affected by ischemia produced by interruption of the artery in the hindlimb and in C2C12 myotubes created by hypoxia in vitro, and the blockade of APIP up-regulation results in TUNEL-positive ischemic damage. Furthermore, forced expression of APIP suppresses ischemia/hypoxia-induced death of skeletal muscle cells. Taken together, these results suggest that APIP functions to inhibit muscle ischemic damage by binding to Apaf-1 in the Apaf-1/caspase-9 apoptosis pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning of a novel Apaf-1-interacting protein: a potent suppressor of apoptosis and ischemic neuronal cell death.

Cytochrome c-initiated activation of apoptotic protease activating factor-1 (Apaf-1) is a key step in the mitochondrial-signaling pathway for the activation of death-executing caspases in apoptosis. This signaling pathway has been implicated in the pathophysiology of various neurological disorders, including ischemic brain injury. In this study, we have cloned a novel rat gene product, designat...

متن کامل

Neuroprotection against hypoxic-ischemic brain injury by inhibiting the apoptotic protease activating factor-1 pathway.

BACKGROUND AND PURPOSE Emerging evidence suggests that mitochondrial damage-mediated neuronal apoptosis is a major contributor to neonatal hypoxic-ischemic (H-I) brain injury. This study was performed to determine whether targeted inhibition of the apoptotic protease activating factor-1 (Apaf-1) signaling pathway downstream of mitochondrial damage confers neuroprotection in rodent models of neo...

متن کامل

APIP, an ERBB3-binding partner, stimulates erbB2-3 heterodimer formation to promote tumorigenesis

Despite the fact that the epidermal growth factor (EGF) family member ERBB3 (HER3) is deregulated in many cancers, the list of ERBB3-interacting partners remains limited. Here, we report that the Apaf-1-interacting protein (APIP) stimulates heregulin-β1 (HRG-β1)/ERBB3-driven cell proliferation and tumorigenesis. APIP levels are frequently increased in human gastric cancers and gastric cancer-de...

متن کامل

The discovery of a novel inhibitor of apoptotic protease activating factor-1 (Apaf-1) for ischemic heart: synthesis, activity and target identification

Apaf-1 is a central component in the apoptosis regulatory network for the treatment of apoptosis related diseases. Excessive Apaf-1 activity induced by myocardial ischemia causes cell injury. No drug targeted to Apaf-1 for treating myocardial ischemia has been reported to the best of our knowledge. In the present work, we synthesized a novel compound, ZYZ-488, which exhibited significant cardio...

متن کامل

Neuroprotection of a sesamin derivative, 1, 2-bis [(3-methoxy- phenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) against ischemic and hypoxic neuronal injury

Objective(s): Stroke may cause severe neuronal damage. The sesamin have been demonstrated to possess neuroprotection by its antioxidant and anti-inflammatory properties. One sesamin derivative was artificially composited, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) had been developed to study its antioxidative activity and neuroprotection. Materials and Methods: The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 38  شماره 

صفحات  -

تاریخ انتشار 2004